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Abstract - In this paper we report our experiences with a new 
texture coarseness measure, as a step towards automation of 
metaphase finding in cell proliferation studies. This measure is 
highly specific to grey-level inter-chromosome coarseness 
features in microscopic images of metaphase spreads, and allows 
to quantify the texture of the cytological objects analysing the 
intensity profile between chromosome-extrema samples. 
Chromosome fragments produce patterns of pixels at low-
resolution, and the local neighbourhood of their individual                                                                                                                                          
extrema presents a characteristic coarseness, along intensity 
profiles on random-oriented test lines. Results of its use on 
images of fields of metaphases and artefacts are compared with 
some representative texture measures, outperforming 
metaphase detection and artefacts elimination. This coarseness 
feature provides a specific metaphase signature that can be used 
in conjunction with other morphological and textural 
parameters for automated metaphase discrimination. 
Keywords – metaphase finding, texture, coarseness, profile, 
extrema. 
 

I. INTRODUCTION 
 
The microscope discrimination of metaphase spreads is a 

method widely and routinely used for the detection of 
chromosomal aberrations in medical genetics, toxicological 
studies of mutagenicity, cell proliferation evaluation for 
drugs safety, and radiation health monitoring, amongst 
others. 

The increasing demands on health services to provide 
genetic counselling, pregnancy screening, evaluation of drugs 
in cellular proliferation and radiation health monitoring have 
added to the pressures on cytogenetic laboratory services. 
The task involved in locating a number of individual 
metaphases is very time-consuming, even at low resolutions. 
In both, routine and research environments, the involved task 
are tedious and tiring, but the importance and consequences 
of the results of screening process demand consistency and 
accuracy from highly trained and qualified staff. The 
combined effect of these factors, coupled with the 
omnipresent need to avoid further cost, has prompted and 
accelerated the design and development of systems for 
automated metaphase spread location. 

Several approaches and systems known as metaphase 
finders have been proposed. The first instrument for semi-
automated metaphase finding was described in a paper 
published in 1963 [1]. This system was initially concerned to 
locate metaphase and was based on a conventional optical 
microscope with a scanning stage using video imaging. Other 
attempts to semi-automate metaphase finding using a closed-
circuit TV camera were reported in [2,3]. More recent works 

report the use of commercial metaphase finders and their 
performance [4,5,6].  Although significant progress has been 
made in automatic metaphase finding technology, the total 
time spent in the analysis of slides and a greater accuracy still 
represent important challenges to biomedical engineers. 

In the present study, we concentrate our efforts in 
extracting a texture measure from the inter-chromosome 
profile information, achieving results that substantially 
enhance metaphase recognition and artefact discrimination. 
The texture measure proposed was tested in a current cell 
proliferation study. Working in a tenfold magnification and a 
visual field of 610x477µm, this profile feature allows the 
identification of variable-shaped metaphases in the presence 
of many artefacts. The identification performance was 
compared with that of classical texture features such as RED 
[7] and those derived from grey-level co-ocurrence matrices: 
contrast, entropy, energy, angular second moment [8]and 
MDWRE [ 9]. 
 

II. METAPHASE TEXTURAL INFORMATION 
 
The human expert identifies metaphase spreads mainly by 

observing the internal texture produced by the chromosomes 
inside. In this sense, the microscope images show that texture 
in metaphase is composed of cytological material and image 
noise, but it also comprises digitalized, sub-sampled and 
overlapped chromosome fragments. This composition 
organizes grey-level variations and specific pits 
(chromosome fragments) into characteristic signatures along 
intensity profiles on random-oriented test lines. Our 
experience, and that of other researchers, has shown that 
relationships between extrema features are meaningful 
characteristics of such signatures [10].  Moreover, the semi-
structural character of such textures (with the sub-sampled 
chromosomes constituting the texels) makes them suitable for 
run-length analysis [11], and stereological-feature extraction 
by profile analysis along test lines [12].  

Grey-level images I(x,y) are often studied as surfaces, with 
intensity seen as height, and texture appearing as relief whose 
extrema features combine intensity and shape information.  
We propose to simplify 2D feature analysis by interpreting 
the statistical features of 1D profile samples between extrema 
dots. The mean and the standard deviation of intensity height 
along such profiles, that is, the linear RMS-roughness value, 
cannot serve alone to discriminate different signatures.  In the 
other hand, a 2D RMS-roughness evaluation averages-out all 
features, while in the present study we seek inter-extrema 
texture signatures, which are best evaluated by analysing just 
1D profiles between extrema points, and considering the 
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ranges, that is, the largest differences between maximal and 
minima. 

 
III. INTER-EXTREMA PROFILE TEXTURE FEATURE (IEPR) 

 
In a profile or region containing N height (grey level) 

samples, their values can be ranked to obtain the n-order 
statistics, with n=1,..., N. Besides traditional RMS-roughness 
measures, statistical rank filters like the median, or the 
trimmed mean [10] can be used to obtain simple coarseness 
descriptors. In particular, the median rank filter is the N/2-
order statistics, if N is even, and average of the (N-1)/2 and 
(N+1)/2 values for N odd, and it constitutes a robust RMS-
roughness estimator. These observations prompted us to 
focus on the very distributions of ranges (the largest 
difference between maximal and minima in each profile), and 
device a simple coarseness feature. While the median rank 
filter (a �robust� RMS roughness estimator) is representative 
of height differences, coarseness is better described by the 
distribution of larger height differences. Thus, the histogram 
median (not the rank filter median) is used once all profile 
ranges (the N-order statistics) are counted.  Besides 
extracting the median of the range population, we select only 
those profiles (1) between chromosome intensity minima (at 
each chromosome pattern), and (2) within a window 
representing the inter-extrema mean separation. Note that 
such profiles are equivalent to those of diameter samples 
across the neighbourhood of each minimum. Our tests in fact 
show no difference, provided that the neighbourhood size is 
the same as the window size representing the inter-extrema 
mean separation. We formalize in mathematical terms the 
above description as follows. 

Let ℘  be the set of N points Pi (xi,yi), with i=1,�,N, and 
whose integer coordinates, xi,yi, lie within the analysed object 
boundary. These points Pi are actually the coordinates of the 
extrema (chromosome or artefacts dots) of an intensity-
surface image I(x,y), see Fig. 1b.  We choose pairs (Pi , Pj ), 
i≠ j at random, within the window intervals. 

To define the profile samples (Fig. 1c) along test lines, let 
]}1,0[,)1({ ∈+−==℘ ttPPt jitij l  be the straight line 

between the points Pi and Pj ,  and let )( tijI l  be the grey 

level at lt. then: 
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are the endpoint intensities.  Note that in a discrete space, I(xt, 
yt) may not be defined.  In such a case, its value is estimated 
by a bilinear interpolation, from the nearest neighbours. 

Let 
 

)(min)(max tijtijij IIdif
ijtijt

ll
ll ℘∈℘∈

−=           ( 2 ) 

 

be the range of the profile-intensity defined by the straight-
line lt, where t∈ [0,1].  The coordinates of the initial point Pi 
and the final point Pj of the profile are within a rectangular 
window where ηη ≤−≤− jiji yyandxx ; in our case 

η=3.  Since chromosome intensities vary randomly, their 
extrema location and intensities are random variables, and so 
their difference. 

Let H( dif ij ) be the histogram of all ranges, defined in the 
equation ( 2 ), over the set ℘ , with grey level bins in [0,255].  

Let H~  be the median of the histogram H, then we define  
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where Imax is the maximum saturation grey level of the image 
and t∈ [0,1].  Thus, IEPR is a texture measure of local 
coarseness, along the intensity profile between extrema.  
Normalization allows proper comparison under different 
contrast condition. 

Denominator )}(min{min
,max tijji

II
ijt

l
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− is never null, since 

profile endpoints include always the chromosome (or 
artefact) minima.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Inter-chromosome (or inter-extrema) profile analysis. a) 

metaphase spread, b) detected extrema in a horizontal and vertical scanning 
of figure 1 (a), c) profile intensity graphic between two extrema points Pi and 
Pj. 

 
IV. EXPERIMENTAL RESULTS 

 
To show the performance of IEPR, as a discriminating 

feature in the classification of metaphases, we have applied it 
to the problem of metaphase finding in cell proliferation 
studies [13]. 
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A. Test sets 
 

 Twenty-two slides from different experiments, and six 
donors where randomly chosen to create two test sets, 
composed of 76 metaphases and 191 artefacts. 

Each test image was digitised on a 512x480-pixel grid with 
grey-level resolution of 256 levels. 

It is important to remark that artefacts on slide image 
present wide variation in shape size and texture. This 
indeterminacy makes artefacts to have a high possibility of 
being a source of errors (false positives, mainly) in the 
automatic metaphase-finding problem. Moreover, the 
probability of artefacts is extremely high (one metaphase for 
a thousand of artefacts in mitotic index analysis). Fortunately, 
a large percentage of these artefacts are outside the size range 
of metaphases we want to score, and it is then possible to 
apply an outlier exclusion criterion. Nevertheless, the 
remaining artefacts are the most difficult to discriminate, as 
many of them may be similar to the objects of interest. The 
metaphase correctly recognized represents the true positive 
metaphase subset, denoted as TP.  

 
B. Evaluation of IEPR for the test sets 

 
IEPR was calculated for all objects from the two test sets 

(metaphase spreads and artefacts). Results are summarized in 
Table 1. The nuclei and artefacts objects miss-classified as 
metaphase represents the false-positives metaphase subset, 
denoted by FP. Comparison of performances included IEPR, 
MDWRE, relative extrema density (RED)[7] and the most 
meaningful measures from grey-level co-occurrence matrices 
(0° angular relationship): contrast, energy, entropy and 
angular second moment (ASM) [8]. 
 

TABLE 1. 
 IEPR PERFORMANCE COMPARISON WITH OTHER TEXTURE FEATURES. 

PERFORMANCE=(TP-FP)/ TOTOBJ 
 TP 

metaphase 
FP 

metaphase 
 

Performance 
IEPR 96% 5% 0.9079 
MDWRE 84% 14% 0.7105 
Contrast 96% 25% 0.6447 
RED 74% 29% 0.4473 
Energy 32% 48% 0.0263 
ASM 33% 65% - 0.2895 
Entropy 18% 75% - 0.3684 

 
V. DISCUSSION AND CONCLUSIONS 

 
We have proposed and evaluated in this work an inter-

chromosome specific measure on profile range distributions, 
used as a characteristic signature of metaphase spreads, as 
compared with present artefacts. This signature relates local 
range distributions with the local coarseness characteristically 
produced by chromosome fragments.  

Based on the percentage of true positives (TP) and false 
positives (FP), a comparison between IEPR and other texture 
feature�s performances is achieved. The performance of 
IEPR, as a texture feature, surpasses by 22% the best of the 

compared features (MDWRE) for metaphase finding (Table 
1). 

Variograms, run-lengths and co-occurrence features 
describe better spatial dependency and extrema separation 
relationships, while intensity signatures describe the kind of 
coarseness differences observed among stimulated nuclei, 
artefacts, cluttered or dispersed chromosomes. Other 
approaches (e.g. multi-resolution, Markov random fields and 
Gabor filters) require higher resolution and precious 
processing time to give meaningful discrimination results.  

The proposed coarseness measure represents a reliable and 
cost effective metaphase signature that can be used in 
conjunction with other morphological and textural parameters 
for automated metaphase discrimination. 
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